XQTav Reference Guide

Table of Contents

L. INEEOAUCTION. .ttt ettt ettt e e e e st e e s it e e ab e e e bt e e s bt e e eabbeeeeabeeeanbaeesabeeenanees 3
2. USAZE — QN EXAMIPIE....ceeiiiieiiiieeeiieeeiiee ettt e et ee et e e sttt e et eeesabteessteeestteeessseessasneesanseesanseeeensseeenssees 4
2.1. AN EXPEIIMENT OVETVIEW.....eeeiurireeririeeriieeeeiiiteeeitteesareeesnseesssaeesssseeessnseessssseesssseeesssseessssseeens 4
2.2. Description Of the WOTrKEIOW.......coccuiiiiiiiiiiiii e 5
2.3. Description of the runBlastp_nested WOrkflow...........coccueeiriiiiiiiiiiiniiceee e 6
2.4. Description of the getGOIds_nested WOrkflow.............coooiiiiiiniiiiiniii e, 7
2.5. Description of the xq_gofilter XQTav ProCESSOT.......cuutirruieiiriieerieeeeiieeerieeeeeieeeesieeeereaeee s 8
2.5.010 THE COAC....ceiniiiiiiiiiei ettt e st e st e s bt e e ebteeesbreeenane 9

2.6. EXQMPIE SUMIMATYcooutiiiiiiiiiiiie ettt ettt e et et e st e e sab e e sbbeesabeesaaeesaeeeas 13

3. Intermediate typing SYStemM (ITYPE)...cccuveeiruiiiiiiiiieiiteeiteee et e 14
3.1. Data tyPes 1N TAVEINA. ..cccuutieiiiieeiiiieeiiie ettt e ettt e s ettt e et e e s bbteesnbaeeessabeeesanbeeenns 14
3.2. Mapping of Taverna data types to XIML........ccccouiiiiiiiiiiiiiieieiieeeeie e 14
3.3. Encoding of primitive VAIUES..........ceeriuiieeiiiieeiiie ettt e eteeeeiteeeetae e et esaee e s eaae e ennnee e 15
3.4. Reading XQTav processor input values from XQUETY..........ccccceeriiiiniiiiniieniienieeniienieeneeene 16
3.4.1. XML INPUE VAIUES. ..ottt e 16

3.5. Outputting results back t0 TAVEINA.ueeiiuiiiriiieeiieeiie ettt e s saeeesree e ebeeens 17
3.0, EXAMPIES.....coiiiiiiiiiieeiie ettt ettt e et e et e e st e e ettt e e abae e et baeennbaeeennbeeenbaeens 17
3.6.1. COPYING INPUL 10 OULPUL.c...eeeuiiieiieeiieeiteeeitee ettt e et ee st testeesbeesabeesabeesbeesabeesabeesabeesbeeeneeas 17
3.6.2. XIML INPUL-OULPUL...cutiiiiiiiiiiieeiie ettt ettt e be e bte et e e s it e e sbbeesbbeennbeesaeeas 18

4. Input type mismatch — IMPLICIE ILETALIONS. ..ccccuvveieriiieiriieeeiiiee et eerteeestee e et e e sbaeeesbbeeesibeeesnans 19
4.1. When is type-matching Needed...........cooiuiiiiiiiiiiiiiiiiieeieeeeee e e 19
4.2. Tteration methods in TAVETNA.coc.eiiiiiiiiiiiiie et 20
4.3. Tteration Methods 1IN XQTAV....cc.uvuueeiiiiiiiiiiiiieiiee e e e e e e et reeeeeeeeeeeeenan 21
4.4, TEEratiON SELATEZIES. ..ccueerurerereeteerteenteetee st e sttt et e eeteesteees e eateesseeesbeeesneesseeenaeesareenaneenneeenneenes 23
4.5. Chapter SUIMIMATYcc.eerueeiureeiienieenteeieesiteenteeteeeteesaeeeseesareesseeesbeeesneenseeenaeesaseenaneeneesnneenes 24

5. XQuery generator — HMIEATIONS.eiviuieeeiiieeeiieeeriieeeeitee et eeeibeeesbteeseseeeesabeeesaseeessseeessaseeennns 25
5.1, ATLETNALE PIOCESSOTS. c.uuvvieeurieerurieeatreerteeeesetteeasteessseeesssreeannseeessseesssseesssssessnsseesssseessnsseesnsees 25
5.2. Processor error Randling............cooieiiiiiiiiiiiieic et 25
5.3. Advanced iteration usage ProblemS...........covuiiiiiiiiiiniiieeeteete e 25
5.4, CRAPLET SUIMIMATYceutieiriireeeiieeeiteeerteeeeniteeesteeesanteesssteesanseessseessnseeessseeessseessseessnseesnsseeennses 27

6. Executing XQTav-generated queries from command 1iNe............cc.eevviieiniiieiniieeiniieeeiieeeieeee 29
0.1, USAZE.....eeeeietieteet ettt ettt b e bttt ettt st a e b sae b ereeas 29

1. Introduction

XQTav [XQTav] is a software component that extends the Taverna [Tav] Workbench and makes it
possible to use XQuery 1.0 [XQuery] inside Taverna workflows. The application introduces a new
type of processor that executes XML queries using Saxon [Saxon] XQuery engine.

In an XQTav processor, the XQuery defines almost everything: input and output ports, their types,
and of course the computation the processor is going to perform.

XQTav can also convert existing Taverna workflows (possibly including XQTav processors inside,
too) to XML queries, performing almost the same computation as the original workflow. Almost the
same as there are some limitations that will be covered later in this document.

This document explains some advanced topics concerning XQTav like implicit iterations, limitations
of the XQTav XQuery generator and so on. There are also some examples here.

The software is available for download from xqtav.sourceforge.net.
The Authors are:

- Jerzy Tyszkiewicz, PhD, DSc, Warsaw University

« Andrzej Kierzek, PhD, Polish Academy of Sciences

-« Jacek Sroka, MSc, Warsaw University

« Grzegorz Kaczor, MSc, Warsaw University

The examples presented in this document are also available in the XQTav release, under /examples
subdirectory. It may be necessary to run the examples in Taverna to fully undestand the description.

When an important term is introduced, there is always a bibliography link to that term. Some less
important links are also placed directly in the text.

Warning. This document is not an introduction to XQTav. Please refer to the basic tutorial for
introduction. Here we assume that you know Taverna well and have some basic experience with
XQTav and XQuery.

2. Usage - an example

Let's start with a “real life” example of an in silico experiment that will show how XQTav can be
used together with other Taverna processors.

--> /examples/filterBlastOutputByGo

2.1. An experiment overview

In the example experiment, we run BLASTP [BLAST] on a specified sequence and filter the results
list by Gene Ontology [GO] ids specified as a parameter of our experiment.

The experiment has got three parameters described below:
1. e-value-cutoff the sequence similarity threshold value to filter out less similar sequences
2. sequence the amino acid query sequence that is passed to BLAST
3. go_list list of Gene Ontology identifiers we are interested in

The result of the experiment is a list of sequences in FASTA format that have at least one GO
identifier specified on the go_list list.

We split the computation into the following major parts:

1. run BLAST and fetch the results' accession numbers; we use DDBJ BLAST [DDBJ-
BLAST] to achieve that

2. query the GO Browser [QuickGO] to get Gene Ontology ids associated with each of the
result sequences

3. choose only that sequences that have at least one GO identifier on our list of interesting ids
(the go_list parameter)

4. fetch sequence descriptions for the interesting sequences.

The Taverna workflow overview is shown in picture 1. The most important processors are:

—

runBlastp_nested — a nested workflow that wraps the DDBJ BLAST invocation

2. getGOIds_nested — a nested workflow that wraps the GO Browser query invocation
3. xq_gofilter — the XQTav processor that does the GO id lists filtering

4. fetchSequences — the processor that fetches sequences given an accession number

The additional processors (database, uniprotPrefix, makeUSA and outputFormat) are local Java
processors and their role in the computation will be explained later.

database | ' | ewalue-cutoff sequence go_list o

R T i

r—

uniprotPrefix xq_gofilter

e

outputFormat makeUSA

A X

fetchSequences

Sequences |7

llustracja 1. The example experiment - overview

2.2. Description of the workflow

Picture 4 shows more information about the workflow, including processors' input and output port
names and data types.

The runBlastp_nested processor (that is in fact a nested workflow) populates three input ports:

« sequence — a sequence that is to be passed to BLAST — we pass a workflow input here; the
input should be a sequence in FASTA format

database — name of the database to query using BLAST — we use Swiss-Prot database so the
input is SWISS here (saved in a string constant processor database)

+ exp — maximum similarity value we accept — we pass a workflow input here; the input
should be a float number, usually less than /.0; we can use, for example, /e-4, that is 0.0001

The result of the processor execution is a list of sequence accession numbers. The list is passed to
two processors — to getGOIds_nested and to xq_gofilter.

The getGOIds_nested processor (a nested workflow too) reads an accessor number passed to its
uniprot_ac input and outputs a list of Gene Ontology ids associated with the protein identified by
that number. As the values passed to the uniprot_ac input will be of type [('text/plain’) and the
formal type of the input is text/plain’, an iterative invocation is needed — the getGOIds_nested
processor will be called once per each accession number on the list being passed to the input.

The output of the getGOIds_nested processor (a list of GO identifiers, or, more strictly, a list of

lists of GO identifiers as the processor will usually be called using implicit iterations) is now passed
to the xq_gofilter's input go_id_lists. Please pay attention again: as the input type of go_id_lists is
I(I('text/plain’)) there will be no iteration here — even if the getGOIds_nested processor is called
multiple times, the results will be collected into one list of lists — and that is what we expect to
happen here.

The other inputs of xq_gofilter are uniprot_acc_list that is simply a list of accession numbers
coming from runBlastp_nested and go_/ist holding a list of Gene Ontology ids we are interested
in.

The xq_gofilter processor itself performs matching between its three inputs. In the uniprot_acc_list
input port, it has got a list of accession numbers. In the go_id_lists input, there are lists of GO ids
assigned to corresponding accession numbers on the uniprot_acc_list list. For example, the third
element on the go_id_lists is a list of Gene Ontology ids assigned to the protein identified by the
third accession number on the uniprot_acc_list. The xq_gofilter processor outputs only that
accession numbers for which at least one of the assigned Gene Ontology ids is found on the id list
being passed to the go_list port.

The last step is fetching the amino acid sequence for each of the accepted accession numbers. We do
it via the seqret [SOAPLAB] fetchSequences processor and thus we have to compose a Uniform
Sequence Address [usa]. This is done using the makeUSA (string concatenation) and uniprotPrefix
(string constant: uniprot:) processors. The last processor, outputFormat, is a string constant with
value ncbi and tells the fetchSequences processor that the sequences returned should be in ncbi
format.

2.3. Description of the runBlastp_nested workflow

The workflow that constitutes the runBlastp_nested workflow is shown in picture 2. There is
nothing special or difficult in the workflow so we will only have a brief look at its construction.

The core of the computation here is the ddbj_blast processor that executes the BLAST query. The
output of the processor is a standard, text BLAST output format. So to extract the accession
numbers, we have to do some filtering of the output. Two regex-based local Taverna processors are
sufficient to do that — fext_to_lines splits the output to a list of lines and extract_ac_ids select only
lines that look like result sequences, at the same time capturing the accession numbers.

The rest of the processors are required to pass BLAST execution parameters to the ddbj_blast
processor. These are program (blastp) and makeopts (-eEXP, where EXP is the similarity threshold
value).

database sequence

A : optprefix

value

program text’plain’

value

#xfplain'

program | database | query | param
ddbj blast regex_newline

textplain’

Result value

textplain’

regex extract ac id extract_group

value

I(text/plin’) in' Yextplain’

('text/plain’)

llustracja 2. The runBlastp_nested workflow

2.4. Description of the getGOlds_nested workflow

Picture 3 shows the getGOIds_nested workflow. The goal of the workflow is to get a list of Gene
Ontology identifiers for a given accession number.

To do it, we compose a HTTP GET request to the QuickGO application and filter the output HTML
with regular expressions to extract GO identifiers. The structure of the workflow is very similar to
that of runBlastp_nested and we will not describe it in detail here. In contrary to
runBlastp_nested, only local Taverna processors are used to get GO identifiers as the QuickGO
application is accessed using HTTP only and not SOAP.

The output of the workflow is a list of GO identifiers assigned to the sequence identified by the

accession number passed to the uniprot_ac workflow input.

webURL | - .
value

textplain’

textplain’
*tx-taverna-web-ur'

linesRegex
value

text'plain, text’html’

textplain’ textplain

extrBegex extrGroup

Ii'text/plain' in' xtplain’

text/plain’)

I'text/plain’]

llustracja 3. The getGOlds_nested workflow

2.5. Description of the xq_gofilter XQTav processor

The xq_gofilter processor is an XQTav processor. This means that the computation it performs and

the port structure are defined using XQuery. Let's have a closer look at it.
We already know what the processor does. It takes three arguments:

« alist of text identifiers named uniprot_acc_list

« alist of lists of GO identifiers named go_id_lists

 alist of GO identifiers named go_list

And there is a correspondence between uniprot_acc_list and go_id_lists: for each index i the
element go_id_lists[i] is a list of GO identifiers assigned to a protein identified by
uniprot_acc_list[i].

Now, the xq_gofilter processor first finds that sequences of GO identifiers from go_id_lists that
have a non-empty intersection with go_list and then outputs that sequences from uniprot_acc_list
that correspond to the found lists of identifiers.

The processor's code makes extensive use of XQuery FLWOR [FLWOR] expressions. Being similar
to SQL but applicable to XML elements the FLWOR expressions form a quite convenient way of
manipulating and filtering XML data. They seem also prone to optimalisation.

2.5.1. The code

Before any computation is done, there are two functions defined that wrap input lists into XML
elements to simplify the further processing.

There is an auxiliary namespace defined, x, with URL http://xqtav.sourceforge.net/ns/temp/x:

decl are nanmespace x = "http://xqtav. sourceforge. net/ns/tenp/x";
This is obligatory as Saxon requires all functions to have a namespace prefix.

The first function, x:tagAccSequence, converts a sequence of strings to a sequence of x:el elements.
Each such an element contains two subelements, x:acc containing the corresponding string from the
input sequence and x:num containing the consecutive number.

That is, an input sequence

“

a’,"b","c”
would be converted to

<x:el >

<X: acc>a</ x: acc><x: nunrl</ x: nune
<X:acc>b</ x: acc><x: nunr2</ x: nune
<X:acc>c</ x: acc><x: nunr3</ x: nune
</ x:el >

« Worldlow Inputs

database

value

uniprotPrefix

value

Itext/plin’)

Ii'text/plain') e
textplain’ (textiplain)

textplain’

outputFormat

value

‘{Ext"plain'

sequence_usa

osformat

fetchSeque

nces

outseq

xtplain’

llustracja 4. The workflow with port names and types

Of course, the iteration here must be done using tail recursion:

decl are function x:tagAccSequence($seq, $num {

if (fn:count($seq) = 0) then ()

el se (
<x: el ><x:acc>{fn:string($seq[1])}</x:acc><x: nunk{$nun} </ x: nun»</ x: el >,
x: t agAccSequence(f n: subsequence($seq, 2), $numt1)

The second function numbers each element as well but it differs from the first one in two, very
important details. First, its output are standard /7Type elements (for description of IType see chapter
3). Second, it replaces the wrapping element from each list item with izype:p — and we will use it to
number the list of lists of GO identifiers — the go_id_lists argument of the processor. Why? Because
we do not want to iterate over each element of go_id_lists to wrap it into x namespace element as it
is a list of lists and can contain many elements.

declare function x:tagGolLi st Sequence($seq, $num {
if (fn:count($seq) = 0) then ()
el se (
<itype: p>
<itype: nune{$nun}</itype: nunp

{

}
</itype: p>

$seq[1]/ *

x: tagQGoLi st Sequence(f n: subsequence($seq, 2), $num+1)
)
b

Now we can describe the main code of the processor:
(
| et
$go_list := fn:doc("taverna://itype/go_list")/itype:p

$go_id lists := fn:doc("taverna://itype/go_ id lists")/itype:p

$uni prot _acc_list :=
<x:taggedacc>{
x: tagAccSequence(
fn:doc("taverna://itype/uniprot_acc_ list")/itype:p/itype:p/itype:i

1
)
} </ x: taggedacc>
return
(
<itype:p nane="protein_usa">{
for $go_id_lists in $go_id_lists/itype:p

return
let $go_id_lists :=
<itype: p>{

x:tagCGolLi st Sequence(
$go_id_lists/itype:p

1
)
}<litype: p>
return

let $lists := $go_id_lists/itype:p
[

for
$current_goid in itype:i/fn:string(.)

$al l owed_goid in $go_list/itype:p/itype:i/fn:string(.)

wher e
$current_goid = $al | owed_goi d
return "a"
]
return
(
for

$acc in $Buniprot_acc_list/x:el

$p in $lists

wher e
fn: nunber ($p/itype: nun) = fn:nunber ($acc/ x: num
return

<itype:i snode="none">{
fn:string($acc/ x: acc)
}<litype:i>
)
}<litype: p>
)
)

The marks like that: denote points in code we will have a closer look at.

1. The processor inputs go_list and go_id_lists are read in a standard XQTav way,
to IType format.

2. The uniprot_acc_list input is tagged (numbered) just after being read, using
x:tagAccSequence.

3. A processor output value is constructed — it will be populated to the processor
output port protein_usa.

4. The list of lists of Gene Ontology identifiers from go_id_lists is tagged using
x:tagGoListSequence; the output is a sequence of itype:p elements — each of them contains a
number stored in an itype:num element and a list of itype:i elements containing GO
identifiers.

5. The main filtering is done in the condition brackets [and] using a FLWOR
expression; trying to express it in human language, the expression says: let $lists contain all
such lists of GO identifiers (itype:p elements) from $go_id_lists that meet the following
condition: if you take all elements from the list and all elements from the $go_list list, these
two sets will have at least one common element. The XQuery optimizer should be able to
express it more cleverly.

6. It is time to “join” the found GO lists with the uniprot_acc_list as we want to
output sequence identifiers and not GO id lists. Now the tagging proves useful.

7. Eventually, we output the sequence identifiers. Please note that the output type
of the protein_usa port is 'text/plain’. With little effort, the output type (and the processing
code) could be changed to [('text/plain’) to show statically that the iteration may take place.
Please refer to chapters 3 and 4 for further information about typing and iterations.

2.6. Example summary

XQuery has been designed to facilitate the needs for convenient XML processing. The most
convenient way of using XQTav is when there is XML data to be processed. You can save some
time and simplify your workflow layout then. XQTav can sometimes prove useful when processing
non-XML data but this happens only when that non-XML data can be at a relatively low price
converted to XML format. If no, XQTav will probably be of no use.

You can sometimes use the generation mechanism described in the next chapter to generate the
XQuery that performs a certain, complex processing, and try to further modify it to meet your
needs. But the XQuery produced by the generator tries to preserve many properties of the source
workflow and therefore may be hard to read or modify. And perhaps it would be easier and wiser to
try to extract the parts of the functionality that cannot be done using Taverna and implement only
those ones using XQTav.

3. Intermediate typing system (IType)

IType 1s an interface that defines the way the temporary data is passed from Taverna to an XQTav
processor inputs and from the XQTav processor outputs back to Taverna. You can say IType defines
a kind of serialization of Taverna data types to XML.

In XQTav, all temporary data is represented as IType XML elements.

3.1. Data types in Taverna

In general, Taverna data type system (called Baclava Data Model [BDM]) include simple types and
lists of types. We can show this in a simple grammar-like definition':

TYPE = PRIMITIVE | COLLECTION
PRIMITIVE = "'"<MIMETYPE>[", "<MIMETYPE>]*""'"
COLLECTION = s|l|p|t" ("PRIMITIVE|COLLECTION")"

The description above can be understood as follows.

- aTaverna data type can be a primitive data type or a collection, the primitive types are
atomic units of Taverna data typing; the collections include sets, lists, partial orders or trees
of any Taverna data type,

a primitive data type is denoted by a string, enclosed in single quotes, composed of one or
more MIME type names; a list of MIME types can be found at

www.iana.org/assignments/media-types/,

« acollection is denoted by a letter s, [, p or ¢ in front of an expression enclosed in brackets
that defines the internal data type; the collections include sets (s), lists (/), partial orders (p)
and trees (7); in fact, only lists and sets have been implemented.

Of course, most often used types are fext/plain’ and [('text/plain’). You can also encounter
‘application/octet-stream’, 'text/xml’, 'text/html’, 'image/x-graphviz', image/jpeg’ and lists of that
types. Every Taverna input and output port has a data type defined.

For a more in-detail description of Taverna data types please refer to a document that is available on
Taverna website: taverna.sourceforge.net/index.php?doc=usingbaclava.html.

3.2. Mapping of Taverna data types to XML

IType defines a mapping between the Taverna data types and XML elements belonging to the itype
namespace”. The mapping is performed as follows:

-« avalue of a primitive data type is converted to a single XML element named itype:i,

-+ acollection is converted to a single itype:p element with contents being a list of XML

1 http://taverna.sourceforge.net/index.php?doc=usingbaclava.html
2 the namespace URI is java:pl.edu.mimuw.xqtav.itype. TypeConvert

http://www.iana.org/assignments/media-types/
http://taverna.sourceforge.net/index.php?doc=usingbaclava.html

elements obtained by converting each of the collection items to IType.

The Taverna-IType conversion is performed in two stages. The first stage is a conversion from a
Taverna DataThing to a Java object using the DataThing.getDataObject() method. During the
second stage the XML elements are built.

In the other direction, the conversion is performed from XML elements to Java objects. The objects
are then converted to Taverna data using the DataThingFactory.bake() method.

3.3. Encoding of primitive values

When it comes to primitive values, they can be simple text data as well as complex XML elements
or raw, binary data. Thus /7Type must sometimes perform some kind of data encoding inside XML
elements.

The type of encoding used is indicated by content of the smode attribute of an itype:i element. The
four supported encoding types are:

+ none (default encoding) — no encoding is used, to obtain the item data it is sufficient to
extract text contents of the itype:i element,

- binhex (binary-to-hex simple mapping) — used mainly to transfer wrapped Java objects’;
encoding: the object to be encoded is serialized using Java serialization to a byte array and
each byte in this array is converted to a two-letter hexadecimal representation; decoding: this
type of encoding should not appear when handling XQTav processor input or output values;
you can use it when you use XQTav with Java extensions of Saxon®,

« dtxml-binhex (Taverna serialization and binhex) — used to transfer Taverna BDM Java
objects; encoding: the object to be encoded (which is a DataThing) is serialized using
DataThingSerializer.marshal() method and the result byte array is converted to text just as in
binhex encoding; decoding: should not appear during normal usage of Saxon (see binhex
above),

« xml (XML element inside) — used only when returning XML elements as a result of XQTav
processor computation; if you want to return a value of type 'fext/xml’, simply set the smode
attribute of the proper itype:i element to xml — the element will be passed back to Taverna
with all the namespace declarations properly included, all special chars properly XML-
encoded and so on; encoding: the text value of the node is simply the XML, decoding: you
will typically not need to decode such a value — however, if you do, use
pl.edu.mimuw.xqtav.itype.JDomConvert. Note: this encoding will not be used when reading
value of an input port which type is 'text/xml’' — see next sections for more details.

As XQTav has been designed to work well with XML it will hardly ever become necessary for you
to understand all the encoding described above. Even if you define an extension function and have
to get IType Java objects as function arguments, the TypeConvert.Saxon2IType() method will
convert the arguments to a more usable, abstract IType representation’.

3 the objects to be serialized need to implement the Serializable interface
4 then use pl.mimuw.edu.xqtav.itype.TypeConvert to convert values between IType, Java and Taverna BDM
5 see package pl.edu.mimuw.xqtav.itype, classes: SingleValue, ValueList

3.4. Reading XQTav processor input values from XQuery

To read a value from an XQTav processor input port, you should use a default XQuery document
import function, fin:doc. The protocol to use here is taverna and the host name is itype (for backward
compatibility it can also be workflow) or xml. The path is the name of the port. All the rest of the
URL is ignored.

So, an example call to get the value of an input port named input would look like that:
fn:doc("taverna://itype/input")

But here we have got a little problem. The result of the fn:doc function is a document node. We
would like to get an element node instead. As all the values passed from Taverna to XQTav are lists
(even if the value is not a list it is wrapped into a list to maintain type safety) we can simply select
the itype:p element:

fn:doc("taverna://itype/input")/itype:p

And now everything is as expected — we have an element that contains a list of input values (most
often there will be only one element in the list — the actual input value; but this is not always the
case — see chapter 4). The elements of the list are IType elements that correspond to actual port
input values.

Notice: when you use the XQuery generator you might see in the result XQuery some very long
expressions including constructions like that:

sxl:iter_cross((sxl:makeArg(sxl:mrg(($Sinval_input)))))/sxl:call

This is to ensure proper query behaviour when implicit iterations must be performed. You do not
have to use the sxl in your queries.

3.41. XML input values

When you read processor input using the method described above, even if the port's content-type is
'text/xml’, you will get a plain text content. If you want to get the input data as an XML element that
can be easily used within XQuery, you should change the processor input type to text/plain’ and use
xml instead of itype in the call:

fn:doc("taverna://xml/input")/itype:p

In the element obtained as the result of the expression below you will get a typical IType element
hierarchy with one exception: all the itype:i elements that had their smode set to xml will have been
converted to real XML elements — they can be used in XQuery just like any other XML element
defined inside the query.

This has one important implication — when you pass a not-well formed XML document to an input

that expects 'fext/xml" and use the expression above, an XML exception will be thrown.

3.5. Outputting results back to Taverna

You may want to pass an XML element to a XQTav processor output port so that Taverna received it
as a correct 'fext/xml’ data. To do that you should define an itype:i element into which you put the
XML element you want to output. The smode attribute of the itype:i element should be set to xml.

3.6. Examples

In the examples/itype subdirectory of the XQTav distribution you will find a collection of simple
examples concerning IType. We will discuss them in brief here.

3.6.1. Copying input to output

--> /examples/itype/simple io/simple io.xml

This example shows the simplest way the input port value can be copied to the output port using
XQTav.

The query code looks like that:

<itype:p name="output">{
for $item in fn:doc("taverna://itype/input")/itype:p/*
return S$item

}</itype:p>

What's happening here? The result of the query will be a document containing only one itype:p
element. The element's name attribute specifies the output port name. The content of the element is
the content of the input input port. No advanced transformations are performed here.

Let's run the workflow using the simple_io_input.xml file as input value.
If we load into Taverna the following example:

--> Jexamples/itype/simple io/simple io dump.xml

we may see how does the output look like. Let's run the workflow with the same input (file

simple_io_input.xml). The output looks like that:

<?xml version="1.0" 7?>

<itype:p xmlns:itype="java:pl.edu.mimuw.xgtav.itype.TypeConvert">
<itype:i class="java.lang.String" smode="none">a</itype:i>

</itype:p>

As we can see, the result is a list of items containing only one element. The element is a simple text
and the contents are not encoded. If this was the real output of the previous workflow then the result

would be a one-element list while we had seen that only one single element had been returned. This
is because the output port type is text/plain’ and not [(text/plain’) — in such a case one-element lists
are converted to single values. So the real output of the previous worklow was:

<itype:i class="java.lang.String" smode="none">a</itype:i>

The main reason for returning lists instead of single values is that some implicit iterations can occur
during query execution. See chapter 4 for more details.

3.6.2. XML input-output

--> Jexamples/itype/xml_io/xml copy.xml

This example copies its input to output, too. Additionally, it assumes the input is a well-formed
XML file.

Let's have a look at XQuery:

<itype:p name="output">{
for $elem in fn:doc("taverna://xml/input")/itype:p/*
return <itype:i smode="xml">{S$Selem}</itype:i>

}</itype:p>

Here we also define a single output /7ype element — but the contents now slightly differ from the
previous examples. First, the input is read using xml host part of the URL and not itype or workflow.
Second, the output itype:i element has got the smode attribute set to xml.

The for loop here ensures that in case of an explicit iteration everything goes well but it serves a
second purpose too. When no input is passed to the processor the result will be an empty list.

If we used such a construction here:

<itype:p name="output">{
<itype:i smode="xml">{
fn:doc ("taverna://xml/input") /itype:p/*[1]
}</itype:i>
}</itype:p>

the processor would fail with a runtime exception.

4.

Input type mismatch - implicit iterations

--> Jexamples/type _matching/merge.xml

This chapter describes one of the most interesting Taverna mechanisms that is responsible for
handling situations when the data type of a value being passed to processor's input does not match
the input's data type. And when such a situation occurs for more than one input.

4.1.

When is type-matching needed

Let's show on an example the basic concepts of that type-matching mechanism. Picture 5 shows a
very simple workflow, performing string list concatenation using a given string separator.

Itext/plain’)

e xt'plain’

Cutputs

llustracja 5. A simple workflow -
concatenate a list of strings

Let's consider the following situations — for now, for a single input port:

The types match; the situation occurs when you use file input_match.xml as an input — no
type-matching action is needed, the merge_string_list_to_string processor is called only
once and the result is as expected,

The input type is some kind of a structured collection of expected input type; such a
“structured collection” may be a list, a set, a list of lists of expected input types, and so on;
use input_struct.xml to see an example; in such a situation some kind of an iteration should
be performed; in general, Taverna calls the processor many times, and constructs the output
result that will resemble structure of the input type; in our example, the expected input type
for port stringlist was I('text/plain’) while the actual one was [(I(I('text/plain’))); now, as the
result type of the merge_string_list_to_string processor is 'text/plain’, the output type after
an iterative call will be [(/('text/plain’)) — run the example to see the details.

« The expected input type is a structured collection of the actual input type; you can see that
using the input_simpler.xml input file; in such a situation Taverna wraps the input type to
match the expected one.

« The actual and expected types do not match; then an error occurs; there is nothing
interesting in an error, but you may see it in the sample_mismatch.xml workflow, by passing
an input from input_mismatch.xml.

When the types match or when a wrapping into a list or set or even more complex type is required, it
is clear how such a transformation could be done. The problems appear when it comes to the
iterations.

4.2. Iteration methods in Taverna

The situation is relatively simple when there is only one argument that needs iterating. The
workflow engine simply copies the input type structure to the output, replacing the leaf elements
with matching type with results of multiple processor calls.

Let's show it in a picture. We will express calling a processor as calling a function that fills a blue
frame with an argument — an orange square with a letter. So a simple processor call can be shown in
picture below:

f(lAl)= [A]

Now, expressing lists of items as white and yellow boxes, calling the same processor with a simple
iteration on one argument will look like that:

As we can see, the result of calling a processor to a list of lists of inputs is like replacing each input
in the list results of a function call on that input.

--> /examples/iteration/simple Example 1

The problem arises when there is more than one input that needs iteration. In such a situation,
Taverna defines two kinds of basic iteration methods: the cross iteration and the dot iteration.

Let's assume that there are two inputs — two arguments of a function. If none of them needs type
matching, the results is as in the picture:

(A . @)= @

The types matched — the result is as expected. When one argument only needs iterating, the result
depends of the iteration method that is to be used. If the iteration method is cross then a function is
called multiple times with the output type structure resembling the input type of the argument being
iterated:

@) »®
 BHe

So, here the output is a list, as was the first input. When the iteration type is dot, a first element from
the iterated input type is extracted and used for the only function call:

f(@) ||[H@®

Opposite to no-iteration example, the output here is a list, just like in cross iteration. What's more —
the output type will resemble the input type of the argument being iterated but, which is different
from cross iteration, only the first element of the structure will be used in a function call.

The statements above are generally true when it comes to iterating over more than one argument.

When we use a cross iteration, the all-to-all mapping is done and the output structure gets more
complicated and deeper — one level per one argument being iterated. Things get even worse when
we iterate over three and more arguments — use input input_41.xml on the example
/examples/iteration/strategyExample2/iteration4.xml to see results of a cross iteration over four
arguments.

An example of cross iteration over two arguments is shown in the picture:

@
gle)| [E®

el

®

The input structures had depth of one, while the result structure is one level deeper, with results
grouped by the first argument of the function call.

When we use dot iteration the structure does not get deeper. The first elements of all structures
being iterated are taken and a function call is performed. Now the second elements are used, the
third and so on. An example is shown in the picture:

(Hte], [He
EH1e] [Ee

But be careful — both the cross and dot iterations preserve the most complex structure of the
arguments. See example /examples/iteration/strategyExample2/iteration4dot.xml with input
input_41_h.xml to see what happens if one of the lists being iterated has got a complex structure.

4.3. Iteration methods in XQTav

Due to iteration methods in Taverna being so complex the XQTav does not implement the iterations

the same way. We found it impossible to implement that without breaking the two main XQTav
assumptions: (i) that as many of the processing as possible is done inside XQuery and not inside
Java classes that form XQTav, (i1) the XQuery generated by XQTav is to be human-readable. See
chapter 5 for a detailed explanation of these limitations.

Two invariants about iteration methods in XQTav are:
1. the iteration occurs when the actual type is a list or set of formal type
2. the iteration produces a list of formal type

And there are very important implications of that. When types do not match, Taverna reacts by
constructing an iteration. And it does it during runtime. We tried to reduce the decisions taken by
XQTav during runtime to minimum as they cannot be easily expressed in a static XQuery script that
forms the processor's code. So we cannot construct iterations in runtime and must create them in
XQuery. But at the same time we do not know what will be the actual data types passed to the
inputs. So we perform some “magic” conversions in the Java code. If the actual data type is a
complex structure containing the formal data type then it is automatically flattened to match the
type being a list of the formal data type. This has been hidden in Java and is not visible in XQuery.

Just the same applies to the situation when “wrapping” is needed — it is performed silently in Java
code.

It would be possible to express the wrapping and flattening in XQuery but we think it would make
the XQuery script much less readable.

The simplification of the iteration model makes the dot and cross iterations return the same data
types for the same input types. That makes them easy to implement in XQuery — the /sx/ tab in the
XQuery editor contains two functions, sxl:iter_cross and sxl:iter_dot, performing the two types of
iterations.

The cross iteration differs from the one in Taverna with that it does not wrap the parts of the all-to-
all mapping in separate lists:

A @
) ®) = @
B @
5 @

—
—
4
1<
~

Instead, one list is outputted containing all the possible permutations of the arguments.

The dot iteration is same as the Taverna doft iteration as long as we remember that the iterations in
XQTav cannot get arguments of any type:

IR I
-0’ Ee

To illustrate that, let's compare the results of the Taverna and XQTav iteration on single argument:

Taverna keeps the type structure on the input type:

[=][=]

/o

=]||[=]

while XQTav will first flatten the argument to be of a proper type and then behave just as Taverna
would in that situation:

N—
I
.
—_—
[o][e][=][=]

*
=
Slle]| ==

v
1
ElEIEIE

Please note that the differences described above play the role only when it comes to workflows
transformed to XQuery by the XQTav generator. If you use XQTav processor in a Taverna workflow
and enact the workflow using Taverna, the differences are of no matter as all the iterations are done
by the Taverna engine.

4.4. lteration strategies

Taverna allows you to define more advanced iteration schemes for a processor than only: apply
cross iteration to all inputs or apply dot iteration to all inputs. Such iteration schemes are called
iteration strategies.

The introduction to iteration strategies is available in the Taverna manual
(taverna.sourceforge.net/usermanual/docs.word.html). An iteration strategy for a processor can be
configured in the Metadata tab of the Taverna Advanced Model Explorer.

--> /examples/iteration/strategyExample2

Generally speaking, an iteration strategy is a tree. The internal nodes of the tree are labeled with
cross or dot while the leafs are all inputs of the processor. An example iteration strategy is shown in
picture 6.

#®* Cross product
¢ & ot product

& right

& midright
¢ ® ot product

& midlef

& e
llustracja 6. An
iteration strategy

Such an iteration strategy says: when the cardinalities of inputs do not match, perform the following
operations:

1. run a dot iteration on inputs right and midright
2. run a dot iteration on inputs midleft and left

3. run cross iteration on the results
4

for each leaf of the result structure, replace the leaf with the result of a processor call on the
leaf (the leaf will be a tuple of arguments)

When no iteration strategy is defined for a processor, it is assumed that the iteration strategy is: run
cross on all arguments.

4.5. Chapter summary

Iterations are a powerful mechanism and allow a really advanced processing control if you know
how to use them. Complex iteration strategies are hardly seen in real life while simple ones, like
iterating over one or two arguments, prove really useful and are often applied.

XQTav implements simplified iterations and this should be taken under consideration when
generating XQuery from complex workflows. For more details, see chapter 5.

5. XQuery generator - limitations

The XQTav XQuery generator produces XML queries that, when executed, perform the same
computation as the source workflow does. Currently, XQTav can properly convert almost any
workflow to XQuery. However, there are some limitations: alternate processors, error handling, and
advanced iteration usage.

When it comes to alternate processors and error handling, it is possible that such a functionality will
be included in XQTav if there is such a need. Advanced iteration usage problems probably will not
be solved.

5.1. Alternate processors

--> Jexamples/generator/alternate/alternate xqtav.xml

As the alternate processor definition is located inside the processor's XML definition the XQTav
processor does not remove them. But it does not handle the alternate processors, either. This would
not be very hard to implement but might complicate the generated XQuery significantly.

Therefore generating XQuery from a workflow that contains processors with alternates is a bit risky.
If no processor fails, everything will work well. But if any of the processors that contain alternates
fails, none of the alternates will be called and that can lead to two possible situations: (i) the
processing will bail out with an error message, (i1) some empty values will appear in the temporary
results (see the example) that can lead to strange error messages and make the workflow hard to
debug.

In the examples concerning alternate processors and error handling we use the 'echo with
occassional failure' processor to show situations when is is necessary to use either of the
mechanisms. The processor fails every subsequent four invocations.

5.2. Processor error handling

--> Jexamples/generator/errors/retry xqtav.xml

Taverna allows you to define additional error-handling parameters of the processors. For example,
you can set up maximum number of retries before the enactor will give up calling a non-responsive
or badly working processor.

Again, because XQTav assumes human-readability of generated queries, these error handling
parameters are ignored during generation. Handling them would require additional loops around
processor invocations and, as failure to execute processor produces an exception, there would have
to be some internal (in Java code) support for such methods of invocation. Of course, it is possible
to implement error handling simply in Java code, but that is in contrary to one of the main XQTav
assumptions — compute as much as possible in pure XQuery.

5.3. Advanced iteration usage problems

As it has been said in chapter 4, XQTav does not fully support Taverna iterations and has its own
interpretation of cross iteration being simply a cross product of inputs. Due to the fact some
sophisticated workflows that rely on the Taverna iteration mechanisms may behave differently when
transformed to XQuery.

--> /examples/generator/iterations/proc2proc

Let's have a look at example /examples/generator/iterations/proc2proc/proc2proc_taverna.xml.
The workflow is shown in picture 7.

Ii'"text/plain')
textplain’

Ii'"text/plain'
textplain’

textplain’

Cutputs

llustracja 7. A workflow that relies
On processor-to-processor iteration

Let's execute the workflow with input from input.xml. In this example the type of the output is a list
of lists (I(I('text/plain’))) in spite of formal type being simply 'fext/plain’. This is of course due to
default cross iteration being applied on inputs of concat processor.

Of course, when you generate XQuery from this workflow and execute it with the same input (the
workflow is available in file /examples/generator/iterations/proc2proc/proc2proc_xqtav.xml), the
output will be a simple list (/(text/plain’)) as the iteration is now performed by XQTav-generated
XQuery functions and not by the Taverna enactor.

Also, when you use input-to-processor iterations in your workflow, you should be extremely careful.

--> /examples/generator/iterations/input2proc

Here we have an extremely simple example. The workflow is shown in picture 8.

e xt'plain’

Cutputs

llustracja 8. Processor that can rely
on input-to-processor iteration

The workflow is available in /examples/generator/iterations/input2proc/input2proc_taverna.xml.
Although there is nothing special in this workflow, there are two things the workflow diagram does
not show — the iteration strategy for the concat processor is run dot on all inputs and the inputs that
are saved in input.xml are two lists of strings. Therefore, a dot-iteration will be run on concat's
inputs. And the output is, as expected, a list of two strings.

And now take look at the workflow that contains XQTav processor with XQuery generated from the
workflow above. It is available in /examples/generator/iterations/input2proc/input2proc_xqtav.xml.
When we execute the workflow with input from input.xml, the result will be a list of two lists! That
resembles the Taverna cross-iteration... because it is cross-iteration. The fact that the iteration
strategy for concat processor is dot does not mean that the iteration strategy of the XQTav processor
representing the whole workflow will be the same. It will be cross, a default iteration strategy. So
the iteration between the old workflow's inputs and the concat processor inputs will never take place
— it has been replaced with the iteration between the new workflow inputs and the xgscript
processor inputs.

The problem above can be solved by simply changing the iteration strategy for xgscript to dot on all
inputs but this may not always be so easy.

5.4. Chapter summary

The generator is quite powerful. It can handle complex workflows as well as nested ones and the
ones that contain other XQTav-generated workflows. Thanks to some XQuery tricks it can also
handle time synchronizations.

It cannot handle three things:

- alternate processors

- error handling parameters
complex iteration-based workflows relying on a way Taverna performs iterations

Apart from that, the generator usage is limited by the complexity of generated XQuery. We tried
hard to make it as simple as possible but it takes some time to get used to.

6. Executing XQTav-generated queries from command line

After you generate XQuery from an existing Taverna workflow using XQTav there are two possible
ways of executing such a workflow. The first and the simpler one is to launch it from within Taverna
— the XQuery is simply saved in the xgscript processor properties. The inputs and outputs of the
processor correspond directly to the original workflow's inputs and outputs. The second way is to
run the XQuery alone, without the supervision of Taverna.

In this chapter we cover the second way of executing generated queries.

6.1. Usage

-->/examples/showGeneOntologyContext/gene ontology xquerv.xq

To launch a given workflow from command line using XQTav, you have to perform the following
steps:

1. convert the workflow to XQuery — to do that, simply save the workflow you want to launch;
reset Taverna editor, and add an xgscript processor to the model; now, right click on the
processor, choose Edit XQuery... and use Generator->Get XQuery from SCUFL; as input
select the workflow you have just closed; then save the generated XQuery to file (XQuery ->
Save as XQuery);

2. launch the XQTav command line tool — change the directory to the binary subdirectory of
the XQTav distribution; edit the file named run_saxon_xqtav.sh, set the TAVERNA_HOME
directory so that it pointed to your Taverna installation path. Launch the workflow execution
using the following syntax:

./run_saxon_xqgt av. sh <xquery> <out put> (<nane> <val ue>)*

where <xquery> denotes the path to the query saved in step 1, <output> is the output file
name, and <name> and <value> stand for workflow input name and the value we want to
pass to that workflow input. You may specify any number of such <name> <value> pairs.
For example, if you want to run the example query, issue the command:
./run_saxon_xqtav.sh ../exanpl es/ showGeneOnt ol ogy/ gene_ont ol ogy_xquery. xg\
/tnp/out.xm term D GO 0007601

The result document will be saved in /tmp/out.xml.

Note. You have to change directory to binary before calling run_saxon_xqtav.sh. The gencp.pl script
is located in that directory. If you want to call run_saxon_xqtav.sh from anywhere in the system, you
have to copy gencp.pl to a place somewhere in the system PATH and ensure that the
TAVERNA_HOME variable in run_saxon_xqtav.sh is an absolute path.

If the workflow you are going to launch has got some inputs, XQTav will try to use the values you
specified in command line. If you do not specify an input value for some input port, XQTav will
show a message and try to get the input value from standard input.

Note. See Limitations below.

6.2. Semantics and limitations; type checking problem

So you can treat launching XQTav in batch mode as launching Saxon with a query being the XQTav-

generated XQuery representing a Taverna workflow. Of course, some initializations must be done,
and they are performed in the XQTavCommandLine class. But just after XQTav initialization Saxon
takes control and all the execution from that point depends on Saxon. There is no Taverna
workbench behind, and XQTav does not know anything about the workflow that is being executed.
This is different from the case when the XQuery is executed from within an xgscript processor,
inside a running Taverna.

And from that difference comes the major limitation of command line execution. To understand it
let's see what happens when you execute the generated XQuery from a running Taverna. When you
generate XQuery from a workflow you save the generated XQuery in some xgscript processor. The
processor then changes its input and output ports' names and types to match the inputs and outputs
of the original workflow. During processor execution, the values passed to the xgscript processor
input ports are passed as workflow inputs to the internal workflow represented as XQuery. We can
be sure that the types passed to the workflow will be correct because XQTav performs type
checking while reading of processor inputs.

In the command-line execution, the internal workflow is not saved in any xgscript processor. An
input provider that handles the calls like fn:doc(“taverna://itype/inputl”) knows only the URL
passed to fn:doc and the TLS data that include the running XQTav engine, command line arguments
and Saxon configuration. Therefore the input provider cannot tell the correct syntactic type for the
workflow input identified by URL taverna://itype/inputl.

The input provider (ConsolelnputProvider.java) wraps all non-list values into a list and does not
perform any change on inputs whose type is a list. This does not save the user from type errors but is
required as all input values should have list types (this restriction is about iteration, you may see that
it is mandatory if we want to perform iterations inside XQuery).

There is a possibility to solve the limitation described above but for a price of breaking the rule that
only static initialization is performed in XQTav and the rest is under custody of Saxon. Such a
solution would be to scan the workflow XQuery before passing it to Saxon and extract the XQTAV-
IOINFO structure comment (if it is present; if no, nothing can be done). Then all the workflow input
port types would be known. That would have another drawback too as the user would have to get
familiar with XQTAV-IOINFO and update the structure when fn:doc calls change. This would
reduce the usability of the code and make it more error-prone.

One more restriction is that ConsolelnputProvider allows only strings to be passed as input values.
This is not a technological limitation and can be changed if a more advanced input method is
needed.

The reason for creating a separate class for command-line launch and not doing it on-the-fly (during
the first processor call for example; such approach would allow us to launch Saxon directly from the
console) is that to perform some internal type conversions XQTav needs the current Saxon dynamic
configuration object. So XQTav must start Saxon and not vice versa.

Pictures

The example EXPETTMENT - OVEIVIEW......ccouiiriiirieiieeeteeeite et et e ste et et e seaeesieesreeseneesaeesaneesaneenseesane 5
The runBlastp_nested WOTKEIOW.........cooiiiiiiiiiiiiiciieeee et st e st e et e s saaeessnaeeenes 7
The getGOIds_nested WOTKEIOW........ccuiiiiiiiiiiiieiee ettt et eeaae e 8
The workflow with port names and EYPES.......cccuueeriiiiiiiiiiiee e 10
A simple workflow - concatenate a liSt Of SIIINES.....cceorvieeriieiiiinieiieeee e 19
A TEETALION SIFALEZY .vveeerutrieeiiieeeiiee ettt esiteeetteesiteesstteeetteeseabeeesaseeeessteeesssseeenssaeessnseeesnnseessnsseeens 24
A workflow that relies on processor-to-proCesSOr IETAION.cc.uueeerurieerieeeriieeeiieeerreeerreeesieeesreeens 26

Processor that can rely on input-to-proCeSSOr IETAION.coveerrtreeriieeiieeetieeite e et e e eieeesieeeieeenaeeeas 27

Bibliography

[BDM] - Baclava Data Model, taverna.sourceforge.net/index.php ?doc=usingbaclava.html
[BLAST] - Basic Local Alignment Search Tool,
www.incogen.com/public_documents/vibe/details/blastp.html

DDBIJ-BLAST] - DDBJ-SOAP Project, xml.nig.ac.jp/soapp.html

FLWOR] - FLWOR expressions, www.stylusstudio.com/xquery_flwor.html
GO] - Gene Ontology Home, www.geneontology.org

QuickGO] - EMBL-EBI QuickGO - GO Browser, www.ebi.ac.uk/ego/
Saxon] - SAXON. The XSLT and XQuery Processor, saxon.sourceforge.net
SOAPLAB] - SOAP-based Analysis Web Service, www.ebi.ac.uk/soaplab/
Tav] - Taverna Workbench, taverna.sourceforge.net

usa] - Uniform Sequence Address,
emboss.sourceforge.net/docs/themes/UniformSequenceAddress.html#usa
[XQTav] - XQTav - an XQuery extension to Taverna, xgtav.sourceforge.net
[XQuery] - XQuery 1.0: An XML Query Language, www.w3.0rg/TR/xquery/

e

	1. Introduction
	2. Usage – an example
	2.1. An experiment overview
	2.2. Description of the workflow
	2.3. Description of the runBlastp_nested workflow
	2.4. Description of the getGOIds_nested workflow
	2.5. Description of the xq_gofilter XQTav processor
	2.5.1. The code

	2.6. Example summary

	3. Intermediate typing system (IType)
	3.1. Data types in Taverna
	3.2. Mapping of Taverna data types to XML
	3.3. Encoding of primitive values
	3.4. Reading XQTav processor input values from XQuery
	3.4.1. XML input values

	3.5. Outputting results back to Taverna
	3.6. Examples
	3.6.1. Copying input to output
	3.6.2. XML input-output

	4. Input type mismatch – implicit iterations
	4.1. When is type-matching needed
	4.2. Iteration methods in Taverna
	4.3. Iteration methods in XQTav
	4.4. Iteration strategies
	4.5. Chapter summary

	5. XQuery generator – limitations
	5.1. Alternate processors
	5.2. Processor error handling
	5.3. Advanced iteration usage problems
	5.4. Chapter summary

	6. Executing XQTav-generated queries from command line
	6.1. Usage
	6.2. Semantics and limitations; type checking problem

